About the FLEX I/O and FLEX Ex I/O Systems

1794 FLEX I/O Overview

FLEX I/O offers:

- Flexible, low-cost, modular I/O for distributed applications. FLEX I/O offers all the functions of larger, rack-based I/O without the space requirements.
- Independently select the I/O, termination style, and network to meet your application needs.
- Two separate connection terminals for field power let you daisy-chain power connections to adjacent terminal bases.
- One adapter communicates with up to eight I/O modules. Allows connection to:
 - 256 digital input/output points, or
 - 96 analog input/output points, or
 - mix of I/O to meet your needs.
- Modularity of FLEX I/O system provides choice of network and ease of expansion. The wiring terminations are done almost entirely on the terminal base. Terminal base termination selection includes screw-clamp, spring-clamp, and cage-clamp to wire directly to 2-, 3-, or 4-wire devices. Additional options of D-shell, knife disconnect, and fused terminal bases are available.
- Adjustable keyswitch prevents incorrect module insertion into a preconfigured terminal base.

FLEX I/O is a Distributed I/O System that connects to several Networks including EtherNet/IP, ControlNet and DeviceNet.

Flexible, low-cost, modular I/O for distributed applications. FLEX I/O offers all the functions of larger, rack-based I/O without the space requirements.

Independently select the I/O, termination style, and network to meet your application needs.

Two separate connection terminals for field power let you daisy-chain power connections to adjacent terminal bases.

One adapter communicates with up to eight I/O modules. Allows connection to:
- 256 digital input/output points, or
- 96 analog input/output points, or
- mix of I/O to meet your needs.

Modularity of FLEX I/O system provides choice of network and ease of expansion. The wiring terminations are done almost entirely on the terminal base. Terminal base termination selection includes screw-clamp, spring-clamp, and cage-clamp to wire directly to 2-, 3-, or 4-wire devices. Additional options of D-shell, knife disconnect, and fused terminal bases are available.

Adjustable keyswitch prevents incorrect module insertion into a preconfigured terminal base.
Terminal bases can be exchanged without moving other bases in your system.

If desired, connect individual power supplies to each base to isolate modules. Plug the I/O module into the terminal base to connect the I/O bus and field devices.

Remove and insert modules under power. No direct wiring to the module enables you to change modules without disturbing field wiring or system power.

Mix and match I/O modules. There is a wide variety of digital, analog, and specialty modules.

Each FLEX I/O system contains at least one adapter, one terminal base, and one I/O module.

You can power the system with a FLEX power supply (1794-PS13 or -PS3), a 1606 switched mode power supply, or any other compatible power source. Use the terminal block on the terminal base to wire your field devices directly. Wiring directly saves you:

- installation and testing time
- multiple, long wiring runs and external terminal blocks
- control cabinet panel space

FLEX I/O provides additional savings if system problems develop. Combining your field-wiring terminations and the I/O interface into the same location saves you time and money by making your system easier to maintain and troubleshoot. Additionally, the full-featured FLEX I/O system lets you, in non-hazardous location, remove and insert modules under backplane power without disrupting your system.

Your FLEX I/O system can communicate on EtherNet/IP, ControlNet, DeviceNet, and many other open networks including, but not limited, to Remote I/O and PROFIBUS DP.

Adapters and other components are available for adding to your system as your specific application requirements change.
1794 FLEX I/O XT Overview

FLEX I/O XT modules are designated for extreme environment use.

They differ from their non XT counterparts only in operational temperature ranges and conformal coating is standard for FLEX I/O XT products.

FLEX I/O XT modules meet or exceed the following standards:

- ANSI / ISA-S7.04-1985; Class G1, G2 and G3 Environments
- CEI IEC 6065A-4; Class 1 and 2 Environments
- UL 746E
- MIL-1-46058C to ASTM-G21; (Tropicalization and fungicide)

These standards specify common emissions and classify their concentration levels in a number of industrial processes. Just a few of the common reactive agents that the FLEX I/O XT modules protect against are:

- H2S – Hydrogen sulfide
- SO2, SO3 – Sulfur dioxide
- CnHn – Hydrocarbons
- NOx – Oxides of nitrogen
- CI2 – Wet Chlorine / Dry Chlorine
- NH3 – Ammonia

General FLEX I/O and FLEX I/O XT Specifications

The following table shows the similarities and differences between the FLEX I/O and the FLEX I/O XT specifications.

Specifications Comparison

<table>
<thead>
<tr>
<th>Attribute(1)</th>
<th>1794 FLEX I/O</th>
<th>1794 FLEX I/O XT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature, operating</td>
<td>0…55 °C (32…131 °F)</td>
<td>-20…70 °C (-4…185 °F)</td>
</tr>
<tr>
<td>Temperature, nonoperating</td>
<td>-40…85 °C (-40…185 °F)</td>
<td>-40…85 °C (-40…185 °F)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>5…95% non-condensing</td>
<td></td>
</tr>
<tr>
<td>Shock, operating(2)</td>
<td>30 g peak acceleration, 11(±1) ms pulse width</td>
<td></td>
</tr>
<tr>
<td>Shock, nonoperating(1)</td>
<td>50 g peak acceleration, 11(±1) ms pulse width</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>Tested 5 g @ 10…500 Hz per IEC 68-2-6</td>
<td></td>
</tr>
<tr>
<td>Wire size</td>
<td>0.34 mm² … 2.5 mm² (22…12 AWG) stranded copper wire rated at 75 °C or higher, 1.2 mm (3/64 in.) insulation max</td>
<td></td>
</tr>
</tbody>
</table>
| Atmospheric protection | non conformal coated | conformal coated to meet or exceed the following standards:
 - ANSI / ISA-S7.04-1985; Class G1, G2 and G3 Environments
 - CEI IEC 6065A-4; Class 1 and 2 Environments
 - UL 746E
 - MIL-1-46058C to ASTM-G21; (Tropicalization and fungicide) |
About the FLEX I/O and FLEX Ex I/O Systems

Certifications (when product is marked)

- UL Listed Industrial Control Equipment
- UL Listed for Class I, Division 2 Groups A, B, C, D Hazardous Locations
- CE Marked for all applicable directives
- CE / ATEX
- CSA Certified Process Control Equipment for Class I, Division 2 Group A, B, C, D Hazardous Locations
- C-Tick Marked for all applicable acts
- KCC
- Marine Certification
- SIL 2 Certification
- ODVA
- ControlNet

Specifications Comparison

|---------------|---------------|-----------------|
| Certifications (when product is marked)[^3] | • UL Listed Industrial Control Equipment
• UL Listed for Class I, Division 2 Groups A, B, C, D Hazardous Locations
• CE Marked for all applicable directives
• CE / ATEX
• CSA Certified Process Control Equipment for Class I, Division 2 Group A, B, C, D Hazardous Locations
• C-Tick Marked for all applicable acts
• KCC
• Marine Certification
• SIL 2 Certification
• ODVA
• ControlNet | |

[^1]: For all other product-specific specifications, including environmental and certification, see the product sections within this Selection Guide.

[^2]: To maintain these specifications, you must use DIN rail locks.

[^3]: See the Product Certification link at www.ab.com for Declarations of Conformity, Certificates, and other certification details.
Specify a FLEX I/O or FLEX I/O XT System

Follow these steps as you specify your FLEX I/O or FLEX I/O XT system:

<table>
<thead>
<tr>
<th>Step</th>
<th>See</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Select a communication adapter</td>
<td>CIP Network Infrastructure</td>
<td>7</td>
</tr>
<tr>
<td>Choose the network for your operating system.</td>
<td>Select a Network</td>
<td>8</td>
</tr>
<tr>
<td>2 Select I/O modules based on field device</td>
<td>Digital I/O Modules</td>
<td>15</td>
</tr>
<tr>
<td>location of the device</td>
<td>FLEX I/O Analog, Thermocouple and RTD Modules</td>
<td>35</td>
</tr>
<tr>
<td>your application</td>
<td>FLEX I/O Counter Modules</td>
<td>58</td>
</tr>
<tr>
<td>number of points available per module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Select a terminal base</td>
<td>General Specification Comparison</td>
<td>65</td>
</tr>
<tr>
<td>Choose an appropriate terminal base for your modules.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Choose appropriate power supplies</td>
<td>Power Supply Definitions</td>
<td>67</td>
</tr>
<tr>
<td>Choose appropriate power supply</td>
<td>Power Requirements and Transformer Sizing</td>
<td>68</td>
</tr>
<tr>
<td>Ensure sufficient power for the communication adapter and modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Determine mounting requirements and select accessories</td>
<td>panel mount or DIN rail mount</td>
<td>113</td>
</tr>
<tr>
<td>Determine whether to panel mount or DIN rail mount the FLEX I/O system and at what orientation (horizontal or vertical)</td>
<td>1794-CE1 and 1794-CE3 Extender Cables</td>
<td>115</td>
</tr>
<tr>
<td>Choose appropriate optional accessories to enhance your system</td>
<td>1794-NM1 FLEX I/O Mounting Kit</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>1492-EA35 DIN Rail Locks</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>1794-LBL FLEX I/O Label Kit</td>
<td>116</td>
</tr>
</tbody>
</table>
Step 1 – Select:

A FLEX I/O adapter module interfaces FLEX I/O modules to an I/O scanner port across a communication network. The FLEX I/O adapter module contains a built-in power supply that converts 24V DC to 5V DC for the backplane to power the FLEX I/O modules.

- Your 1794 FLEX I/O system can communicate on:
 - EtherNet/IP
 - ControlNet, single media or redundant
 - DeviceNet
 - Many other open networks including, Remote I/O, PROFIBUS DP, and others from Encompass partners

CIP Network Infrastructure

The Common Industrial Protocol (CIP) allows complete integration of control with information, multiple CIP networks and standard Internet technologies. CIP provides manufacturers with a scalable and coherent architecture incorporating discrete, process, safety, synchronization and motion applications using the same network technology as the ERP, MES enterprise levels applications. Ultimately, network convergence helps align technology with business goals for business process transformation and enterprise-wide visibility.

The following networks share the Common Industrial Protocol at their upper levels, while remaining media independent at their lower levels. This allows manufacturers to specify the best network for their application and eliminate costly and complex gateways when connecting dissimilar upper level networks.

- EtherNet/IP is an open industrial networking standard that supports implicit and explicit messaging and uses commercial, off-the-shelf Ethernet equipment and physical media.
- ControlNet allows intelligent, high-speed control devices to share the information required for supervisory control, work-cell coordination, operator interface, remote device configuration, programming, and troubleshooting.
- DeviceNet offers high-speed access to plant-floor data from a broad range of plant floor devices and a significant reduction in wiring.
Select a Network

You can configure your system for information exchange between a range of field devices and a specific scanner. You select the communication adapters for the networks that meet your needs:

Network Comparison by Application Requirement

<table>
<thead>
<tr>
<th>Application Requirements</th>
<th>Network(1)</th>
<th>Communication Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant management (material handling)</td>
<td>EtherNet/IP</td>
<td>1794-AENT</td>
</tr>
<tr>
<td>Configuration, data collection, and control on a single, high-speed network</td>
<td></td>
<td>1794-AENTR</td>
</tr>
<tr>
<td>Time-critical applications with no established schedule</td>
<td></td>
<td>1794-AENTRXT</td>
</tr>
<tr>
<td>Data sent regularly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet/Intranet connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Built-in switch, or high availability requirement (2-port AENTR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-speed transfer of time-critical data between controllers and I/O devices</td>
<td>ControlNet</td>
<td>1794-ACN15</td>
</tr>
<tr>
<td>Deterministic and repeatable data delivery</td>
<td></td>
<td>1794-ACN15K</td>
</tr>
<tr>
<td>Media redundancy</td>
<td></td>
<td>1794-ACNR15</td>
</tr>
<tr>
<td>Connections of low-level devices to plant floor controllers</td>
<td>DeviceNet</td>
<td>1794-ADN</td>
</tr>
<tr>
<td>More diagnostics for improved data collection and fault detection</td>
<td></td>
<td>1794-ADNK</td>
</tr>
<tr>
<td>Less wiring and reduced start-up time than a traditional, hard-wired system</td>
<td>Remote I/O</td>
<td>1794-ASB</td>
</tr>
<tr>
<td>Connections to Remote I/O networks</td>
<td></td>
<td>1794-ASB2</td>
</tr>
<tr>
<td>Connection to PROFIBUS DP and DPV1 networks</td>
<td>PROFIBUS DP</td>
<td>1794-APB</td>
</tr>
<tr>
<td></td>
<td>PROFIBUS DPV1</td>
<td>1794-APBDPV1</td>
</tr>
</tbody>
</table>

(1) Communication adapters and other components are available for adding to your system as your specific application requirements change. For more information, go to www.rockwellautomation.com/encompass and search for products under the FLEX I/O platform.

(2) Modules that have the letter K in the last position of the catalog number, before the series designation, refer to conformal coated versions of the standard modules. These modules meet the following certifications: ANSI / ISA-S71.04-1985, Class G1, G2, and G3 environments; CEI IEC 6065A-4 Class 1 and 2 environments; UL 746E

(3) Modules that have the letter R in the catalog number, before the series designation, refer to redundancy versions of the standard modules and are meant for redundancy networks.

(4) Modules that have the letters XT in the catalog number, before the series designation, refer to extended temperatures version of the standard modules.

EtherNet/IP Network

EtherNet/IP is a network suitable for use in industrial environment and time-critical applications. EtherNet/IP uses standard Ethernet and TCP/IP technologies and an open application layer protocol called the Control and Information Protocol (CIP). CIP is also the application layer used in DeviceNet and ControlNet networks. The open Application Layer protocol makes interoperability and interchangeability of industrial automation and control devices on EtherNet/IP a reality for automation and control applications.

The 1794-AENT and 1794-AENTR connect FLEX I/O to Ethernet/IP enabled controllers such as ControlLogix or CompactLogix.
Select FLEX I/O Communication Adapters

DLR network using EtherNet/IP taps. The following is an illustration of how FLEX I/O systems can be integrated into a DLR topology.

ControlNet Network

ControlNet is a real-time control network that provides high-speed transport of both time-critical I/O and interlocking data and messaging data, including upload/download of programming and configuration data on a single physical media link. The ControlNet network’s highly efficient data transfer capability significantly enhances I/O performance and peer-to-peer communication in any system or application where it is used.

The 1794-ACNR15 adapter is capable of accepting redundant ControlNet cable media. The 1794-ACN15 is a non-redundant version.

The following diagram shows the FLEX I/O platform on a ControlNet network.

Figure 2 - ControlNet Communication
DeviceNet Network

The DeviceNet network is an open low-level network that provides connections between simple industrial devices (such as sensors and actuators) and higher-level devices (such as PLCs and computers). The DeviceNet network uses the proven Common Industrial Protocol (CIP) to provide the control, configure, and data collection capabilities for industrial devices. The DeviceNet network is a flexible network that works with devices from multiple vendors.

The following illustration shows the FLEX I/O platform on a DeviceNet network.
Select a FLEX I/O Power Supply

Step 4 – Select:

if power consumption exceeds the maximum for a single power supply, install additional power supplies

FLEX I/O modules are interfaced to the I/O link through a FLEX I/O adapter module with a built-in 24V DC input power supply. The FLEX I/O modules receive power from the adapter/power supply through the backplane. The 120V AC to 24V DC power supply (1794-PS13 or 1794-PS3) is also available for powering the adapter/power supply.

General Specification Comparison

<table>
<thead>
<tr>
<th>Catalog</th>
<th>Power Supply Input Voltage, nom</th>
<th>Power Supply Input Power</th>
<th>Apparent Input Power, max</th>
<th>Transformer Load, max</th>
<th>Output Current, max</th>
<th>Output Voltage, nom</th>
<th>Dimensions (HxWxD), approx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1794-PS3</td>
<td>120V/220V AC</td>
<td>86 W</td>
<td>205 VA</td>
<td>250 VA</td>
<td>3.0 A</td>
<td>24V DC</td>
<td>87 x 94 x 69 mm (3.4 x 3.7 x 2.7 in.)</td>
</tr>
<tr>
<td>1794-PS13</td>
<td></td>
<td>36 W</td>
<td>53 VA</td>
<td>90 VA</td>
<td>1.3 A</td>
<td>24V DC</td>
<td>87 x 69 x 69 mm (3.4 x 2.7 x 2.7 in.)</td>
</tr>
</tbody>
</table>

Power Supply Definitions

Module Supply Voltage — This is typically either 120V AC or 24V DC nominal voltage that is supplied from an external power source wired to the module terminal base unit.

All Flex I/O adapters provide internal power to the maximum possible number of 8 Flex I/O modules. Power supply modules are required to provide 24V to the adapters.

The 1794-PS13 power supply is capable of supplying a maximum of 1.3 A at 24V DC. The output surge current is sufficient to drive four adapters with a surge of 23 A for 2 ms each operating at 24V DC.

The 1794-PS3 power supply is capable of supplying a maximum of 3 A\(^{(1)}\) at 24V DC. The output surge current is sufficient to drive six adapters with a surge of 23 A for 2 ms each operating at 24V DC.

Non-Allen-Bradley DC power supplies can also be used, but should operate within the specifications for the devices they are powering. Size the power supply by calculating the total current consumed by summing the currents for each of the modules used for the power supply operating voltage applied.

\(^{(1)}\) This refers to horizontal mounting: 2.8 A maximum for all other mountings. Refer to the derating curve in the installation instructions for that module.
The 1606 switched mode power supplies are capable of supplying a maximum of up to 40 A at 24V DC and can be used as an alternative when more power is needed.

Digital Input Modules require supplied 24V DC (19.2...31.2V DC) and consume the currents listed in the module specifications.

Digital Output Modules require supplied 24V DC (19.2...31.2V DC) and consume the currents listed in the module specifications plus the total current consumed by their loads. The load current is limited by the maximum load current and surge listed.

Combination Digital Modules have a combination of inputs and outputs. The current load should be determined as described for the combined input and output specifications listed.

Analog Input Modules require supplied 24V DC (19.2...31.2V DC) and consume the currents listed in the module specifications. In addition, adequate power must be supplied to the 1794-IE8 and 1794-IF4I transmitters to deliver input terminal voltage or drive 20 mA into the input impedance listed. This power source may be the same as the module power and can be included in the power supply calculated.

Analog Output Modules require supplied 24V DC (19.2...31.2V DC) and consume the currents listed plus the total current consumed by their loads. The load current is limited by maximum current or resistive load permitted per channel.

Combination Analog Modules have a combination of analog inputs and outputs. The current load should be determined as described previously for the combined modules and output specifications listed. The output load current is limited by the maximum current or resistive load permitted per channel. In addition, adequate power must be supplied to the 1794-IE8 and 1794-IF4I transmitters to deliver input terminal voltage or drive 20 mA into the input impedance listed. This power source may be the same as the module power and can be included in the power supply calculation.

Counter Modules require module power, transmitter input power, and in some cases output load power. If output load power is required, use a separate power supply for output load power for noise immunity.

Power Requirements and Transformer Sizing

- Use the real power value in watts for determining the amount of heat dissipation you will have inside the enclosure.
- Use the apparent power value in VA for estimated power distribution sizing.
- Use the transformer load value in VA of each power supply plus all other loads on a transformer to determine the required transformer size.
Select a FLEX I/O Power Supply

1794-PS3 AC/DC

output current load

output current load (Amps)

real power (Watts) = real power (Watts) X 25

1794-PS13 AC/DC

output current load

output current load (Amps)

real power (Watts) = real power (Watts) X 25